FINE STRUCTURE OF EPR STATE AND UNIVERSAL QUANTUM CORRELATION

B. S. Tsirelson

Tel Aviv University

The problem

If a pair of spin-1/2 particles in the singlet state

(1)
$$\Psi = \frac{1}{\sqrt{2}} |+\rangle |-\rangle - \frac{1}{\sqrt{2}} |-\rangle |+\rangle$$

is given, then the equality

(2)
$$\langle A_1 A_2 \rangle + \langle A_1 B_2 \rangle + \langle B_1 A_2 \rangle - \langle B_1 B_2 \rangle = 2\sqrt{2}$$

takes place for some spin projections A_1, B_1 of the first particle and A_2, B_2 of the second (taking on the two values ± 1). This is the maximal violation of Bell-CHSH inequality within the quantum theory.

If a pair of spinless particles in EPR state

(3)
$$\psi(x_1, x_2) = \sqrt{\delta(x_1 - x_2)}$$

is given, does the equality (2) hold for some two-valued observables A_1, B_1 for the first particle and A_2, B_2 for the second? Yes, it does (Summers and Werner [1]).

A non-singlet entangled spin state

(4)
$$\Psi = \alpha |+\rangle |-\rangle + \beta |-\rangle |+\rangle , \qquad |\alpha| \neq |\beta| ,$$

was used by Hardy [2] for the following spectacular observation: A_1, B_1, A_2, B_2 can be chosen so that each of the three inequalities

$$(5) A_1 \le A_2 , \quad A_2 \le B_1 , \quad B_1 \le B_2$$

holds with probability 1, and nevertheless the inequality

$$(6) A_1 \le B_2$$

is violated with a positive probability. In other words,

$$\langle (1 + A_1)(1 - A_2) \rangle = 0 ,$$

$$\langle (1 - B_1)(1 + A_2) \rangle = 0 ,$$

$$\langle (1 + B_1)(1 - B_2) \rangle = 0 ,$$

$$\langle (1+A_1)(1-B_2)\rangle > 0$$
.

Is this situation (7) possible for the EPR state (3)? A positive answer follows immediately from a general result announced in my work [3] and proved here.

First of all, the main idea will be presented informally, with no attention to mathematical rigor when dealing with delta-functions (as in (3)).

The main idea of a solution

Representing the coordinate x of a spinless particle via its integral part [x] and fractional part $\{x\}$,

$$(8) x = [x] + \{x\},$$

we may write

(9)
$$\sqrt{\delta(x_1 - x_2)} = \sqrt{\delta([x_1] - [x_2])} \cdot \sqrt{\delta(\{x_1\} - \{x_2\})}.$$

Of course, the expression $\delta([x_1] - [x_2])$ contains the discrete delta, taking the values 0 and 1 (thus, the square root may be dropped this time), while $\delta(\{x_1\} - \{x_2\})$ contains Dirac's delta function.

Further, the integral part [x] may be represented via its even part 2[x/2] and the remainder (0 or 1); the latter is the residual $[x]_2 = [x] \mod 2$:

(10)
$$[x] = 2\left[\frac{x}{2}\right] + [x]_2.$$

Introduce

(11)
$$\tilde{x} = \left[\frac{x}{2}\right] + \left\{x\right\},\,$$

and observe a one-one correspondence between x and the pair $(\tilde{x},[x]_2)$:

(12)
$$x = 2[\tilde{x}] + {\{\tilde{x}\}} + [x]_2.$$

These \tilde{x} and $[x]_2$ may be treated as two degrees of freedom, one being continuous, the other discrete.

The trivial equality $\delta([x_1] - [x_2]) = \delta([x_1/2] - [x_2/2]) \cdot \delta([x_1]_2 - [x_2]_2)$, combined with (9), gives

(13)
$$\sqrt{\delta(x_1 - x_2)} = \sqrt{\delta(\tilde{x}_1 - \tilde{x}_2)} \cdot \sqrt{\delta([x_1]_2 - [x_2]_2)}.$$

This means that the new degrees of freedom are uncorrelated:

An EPR pair splits into a singlet pair and another EPR pair!

The first consequence is the above-mentioned result of Summers and Werner: the quantum bound (2) can be reached by EPR state. In other words, the quantum correlation matrix

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

can be implemented by EPR state. The second consequence: any quantum correlation matrix (of any size!) can be implemented by EPR state; see [3], Sect. 3.

However, Hardy's case (7) involves not only correlations $\langle A_1 A_2 \rangle$, $\langle A_1 B_2 \rangle$, ... but also linear terms $\langle A_1 \rangle$, ... This is why it is not covered by the above universality property of the EPR state. Can we split an EPR pair into a non-singlet entangled pair (4) and another EPR pair?

(16)
$$\bigcirc$$
 \rightarrow \bigcirc \rightarrow \rightarrow $-$ Hardy \bigcirc

This can be done, in the same way as (14); the point is that the following state is isomorphic to EPR state:

(17)
$$\psi(y_1, y_2) = \sqrt{\delta(y_1 - y_2)} \cdot (\alpha + \beta[y]_2).$$

Here α, β are arbitrary positive constants, and $[y]_2$ is either $[y_1]_2$, or $[y_2]_2$, which is the same due to $\delta(y_1 - y_2)$. This "piecewise EPR" state (17) can be obtained from EPR state (3) by a piecewise linear transformation of coordinates:

(18)
$$y_1 = f(x_1), y_2 = f(x_2),$$

$$\delta(y_1 - y_2) = \frac{\delta(x_1 - x_2)}{f'(x)}.$$

Thus, using (13), $\sqrt{\delta(x_1 - x_2)} = \sqrt{\delta(y_1 - y_2)} \cdot (\alpha + \beta[y]_2) = \sqrt{\delta(\tilde{y}_1 - \tilde{y}_2)} \cdot \sqrt{\delta([y_1]_2 - [y_2]_2)} \cdot (\alpha + \beta[y]_2)$, which means (16).

Using more than two pieces, we can replace (4) with

(19)
$$\Psi = \alpha_1 |1\rangle |1\rangle + \alpha_2 |2\rangle |2\rangle + \dots$$

which is the general form of a state vector of a two-component quantum system, well-known as Schmidt decomposition. Thus:

EPR state is universal among all two-body quantum states!

Some subtleties

Of course, $\sqrt{\delta(x_1-x_2)}$ is not an element of $L_2(\mathbb{R}^2)$; some approximation is needed. Usually, any sequence of state vectors $\Psi_n \in L_2(\mathbb{R}^2)$, satisfying the following condition, is treated as "asymptotically EPR":

(21)
$$\langle \Psi_n | (Q_1 - Q_2)^2 | \Psi_n \rangle \to 0$$
 and $\langle \Psi_n | (P_1 + P_2)^2 | \Psi_n \rangle \to 0$

for $n \to \infty$; here Q_1, Q_2 are coordinate operators, P_1, P_2 are momentum operators. Uncertainty relations

$$\Delta_n(Q_1 - Q_2) \cdot \Delta_n(P_1 - P_2) \ge h$$
, $\Delta_n(Q_1 + Q_2) \cdot \Delta_n(P_1 + P_2) \ge h$

 $(\Delta_n \text{ being the uncertainty for } \Psi_n) \text{ imply } \langle \Psi_n | (Q_1 + Q_2)^2 | \Psi_n \rangle \to \infty, \langle \Psi_n | (P_1 - P_2)^2 | \Psi_n \rangle \to \infty.$ The products

(22)
$$S_n = \frac{1}{h^2} \Delta_n(Q_1 - Q_2) \cdot \Delta_n(P_1 - P_2) \cdot \Delta_n(Q_1 + Q_2) \cdot \Delta_n(P_1 + P_2)$$

may be bounded or unbounded, when $n \to \infty$. The minimal value $S_n = 1$ corresponds to a coherent state.

Interestingly, coherent states are not fit for the present work. The formal relation

(23)
$$a\delta(ax) = \delta(x)$$

was used in (18). Its formal consequence

(24)
$$\int \sqrt{a\delta(ax)}\sqrt{\delta(x)}\,dx = 1$$

is important. Let $f_n \to \delta$ in the sense that

(25)
$$\int f_n(x)\varphi(x) dx \to \varphi(0)$$

for any smooth test function φ . Does it mean that

(26)
$$\int \sqrt{af_n(ax)} \sqrt{f_n(x)} \, dx \to 1 \quad ?$$

In no way! Usually this is not the case. The relation (26) requires that f_n are more or less similar to the following:

(27)
$$f_n(x) = \begin{cases} \frac{1}{2 \ln n} \cdot \frac{1}{x} & \text{when } \frac{1}{n} < |x| < 1, \\ 0 & \text{otherwise.} \end{cases}$$

We see that there is a "fine structure" behind the notion of "EPR state," and this may be of value for some quantum correlations.

The entangled wave function $\sqrt{f_n(x_1-x_2)}$ with f_n as in (27) has its Schmidt decomposition; the set of its coefficients is asymptotically dense for large n. Maybe, this fact is responsible for the universality property. I do not know, whether this universality is compatible with boundedness of S_n (see (22)), or not.

References

- [1] S.J. Summers, R. Werner (1987) Bell's inequalities and quantum field theory. II. Bell's inequalities are maximally violated in the vacuum. J. Math. Phys. 28:10, 2448–2456.
- [2] L. Hardy (1992) A quantum optical experiment to test local realism. *Phys. Letters A* **167**, 17–23.
- [3] B.S. Tsirelson (1993) Some results and problems on quantum Bell-type inequalities. *Hadronic Journal Suppl.* 8, 329–345.