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The problem

If a pair of spin-1/2 particles in the singlet state
1) W = B+l - Gl
is given, then the equality
(2) (A1As) + (A1 Bo) + (B1As) — (B1Ba) = 2V/2

takes place for some spin projections A, By of the first particle and As, Bs of the second
(taking on the two values £1). This is the maximal violation of Bell-CHSH inequality
within the quantum theory.

If a pair of spinless particles in EPR state

(3) Y(x1,72) = /(21 — T2)

is given, does the equality (2) hold for some two-valued observables A, By for the first
particle and As, Bo for the second? Yes, it does (Summers and Werner [1]).
A non-singlet entangled spin state

(4) U=alH)=)+8=)+), el # I8l

was used by Hardy [2] for the following spectacular observation: Aj, By, A2, Ba can be
chosen so that each of the three inequalities

(5) Ap <Ay, A< B, B1<DB
holds with probability 1, and nevertheless the inequality
(6) A, < By

is violated with a positive probability. In other words,

(14 A1)(1 - Ag))
(1= B1)(1+ Ag))
(7) (1 + B1)(1 = Bz))

0
0,
0

(1+A;)(1-By)) >0.
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Is this situation (7) possible for the EPR state (3)? A positive answer follows immediately
from a general result announced in my work [3] and proved here.

First of all, the main idea will be presented informally, with no attention to mathe-
matical rigor when dealing with delta-functions (as in (3)).

The main idea of a solution

Representing the coordinate x of a spinless particle via its integral part [z] and frac-
tional part {z},

(8) v = [z]+{z},

we may write

9) V(a1 —a2) = V/o([21] = [22]) - V6({w1} — {w2}) .

Of course, the expression 0([z1] — [2]) contains the discrete delta, taking the values 0 and
1 (thus, the square root may be dropped this time), while 6({z1} — {x2}) contains Dirac’s
delta function.

Further, the integral part [z] may be represented via its even part 2[x/2] and the
remainder (0 or 1); the latter is the residual [x]s = [#]mod 2:

(10) 2] = 2[£] + [al2

Introduce

(1) 7 = [5] +1{a}.

and observe a one-one correspondence between x and the pair (Z, [z]2):

(12) r=2[7] + {2} + [7]2.

These & and [z]2 may be treated as two degrees of freedom, one being continuous, the

other discrete.
The trivial equality §([z1] — [22]) = 6([21/2] — [x2/2]) - §([x1]2 — [22])2), combined with
(9), gives

(13) Vo(x1 — x3) = \/6(F1 — F2) - /0([21]2 — [22]2) -
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This means that the new degrees of freedom are uncorrelated:

@--- - =@
— — - singlet - — —

An EPR pair splits into a singlet pair and another EPR pair!

The first consequence is the above-mentioned result of Summers and Werner: the
quantum bound (2) can be reached by EPR state. In other words, the quantum correlation
matrix

1 /1 1
(19) 504
can be implemented by EPR state. The second consequence: any quantum correlation
matrix (of any size!) can be implemented by EPR state; see [3], Sect. 3.
However, Hardy’s case (7) involves not only correlations (A As), (A1 Ba), ... but also
linear terms (A;), ... This is why it is not covered by the above universality property

of the EPR state. Can we split an EPR pair into a non-singlet entangled pair (4) and
another EPR pair?

(14)  ()---EpR- - -(2) ~

(16) (H---err---C) ~

This can be done, in the same way as (14); the point is that the following state is isomorphic
to EPR state:

(17) Y(y1,y2) = V0(y1 — y2) - (@ + Blyl2) .

Here o, are arbitrary positive constants, and [y]z is either [y1]2, or [y2]2, which is the
same due to d(y; — y2). This “piecewise EPR” state (17) can be obtained from EPR state
(3) by a piecewise linear transformation of coordinates:

y1 = f(z1), Y2 = f(z2),

18 (5(y1 - yz) = M

|

Thus, using (13), \/6(x1 — 22) = \/6(y1 — y2)-(a+B[yl2) = /601 — §2)-v/([y1]2 — [y2]2)-
(o + Bly]2), which means (16).
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Using more than two pieces, we can replace (4) with
(19) U =o|1)[1) + @2|2)|2) + . ..

which is the general form of a state vector of a two-component quantum system, well-known
as Schmidt decomposition. Thus:

CO---er---C
O— — anything — —O

EPR state is universal among all two-body quantum states!

200 CH---err---C) ~

Some subtleties

Of course, \/d(x1 — x2) is not an element of Ly(R?); some approximation is needed.
Usually, any sequence of state vectors ¥,, € Lo (RQ), satisfying the following condition, is
treated as “asymptotically EPR”:

(21) (Tal(Q1 = Q2)*|Wy) = 0 and (W |(Py + P2)*| W) — 0

for n — oo; here @1, Q2 are coordinate operators, Py, P, are momentum operators. Un-
certainty relations

Ap(Q1—Q2) Ap(Pr—P) > h, Ap(Q1+Q2) An(Pr+P)>h

(A, being the uncertainty for U,,) imply (¥,,|(Q14Q2)*|¥,,) — oo, (¥, |(P1 — P2)?|¥,,) —
oo. The products

1

S8 (Q1 — Q2) - An(P1 — P2) - An(Q1 + Q2) - Ap(P1 + P2)

may be bounded or unbounded, when n — co. The minimal value S,, = 1 corresponds to
a coherent state.
Interestingly, coherent states are not fit for the present work. The formal relation

(23) ad(ax) = 0(x)
was used in (18). Its formal consequence

(24) /\/aé(ax)\/é(ac) de =1

is important. Let f,, — ¢ in the sense that

(25) / fu() () dx — (0)
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for any smooth test function . Does it mean that

(26) /\/afn(ax)\/fn(x) dr -1 7

In no way! Usually this is not the case. The relation (26) requires that f,, are more or less similar to
the following:

1 1
(27) fo(z) = { on T when % < |z <1,
0 otherwise.

We see that there is a “fine structure” behind the notion of “EPR state,” and this may be of value
for some quantum correlations.

The entangled wave function \/ f, (21 — z2) with f, as in (27) has its Schmidt decomposition;
the set of its coefficients is asymptotically dense for large n. Maybe, this fact is responsible for the

universality property. I do not know, whether this universality is compatible with boundedness of
Sp (see (22)), or not.
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